Structure of Aluminium Indium Trisulphide

By M. Schulte-Kellinghaus and V. Krämer
Kristallographisches Institut der Universität, Hebelstrasse 25, D-7800 Freiburg, Federal Republic of Germany

(Received 25 July 1979; accepted 1 September 1979)

Abstract

AlInS ${ }_{3}$, hexagonal, $P 6_{1}, a=6.6712$ (7), $c=$ 17.835 (8) $\AA, V=687.4 \AA^{3}, Z=6, D_{c}=3.45 \mathrm{Mg}$ $\mathrm{m}^{-3}, \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \mu=6.48 \mathrm{~mm}^{-1}, F(000)$ $=660$; final $R=0.026$. The structure is closely related to that of $\mathrm{In}_{2} \mathrm{Se}_{3}$. In is fivefold coordinated by S whereas Al is tetrahedrally coordinated.

Introduction. During our studies of the $\mathrm{Al}_{2} \mathrm{~S}_{3}-\mathrm{In}_{2} \mathrm{~S}_{3}$ system we found the new compound AlInS_{3}. Its crystal growth was performed by chemical vapour transport with iodine in sealed, evacuated quartz ampoules and a temperature gradient of 1073-1023 K. Crystals form light-yellow transparent hexagonal pyramids. A single crystal ($75 \times 75 \times 325 \mu \mathrm{~m}$) was taken for Laue, Weissenberg and precession photographs showing hexagonal symmetry and systematically absent reflections for $000 l, l \neq 6 n$. Since a positive SHG effect was detected there remain four possible noncentrosymmetric space groups: $P 6_{1}, P 6_{5}, P 6_{1} 22$, and $P 6_{5} 22$. To suppress extinction effects, the crystal was quenched several times in liquid nitrogen. Intensities were collected on an automatic four-circle diffractometer (Enraf-Nonius CAD-4) with graphite-monochromatized Mo $K \alpha$ radiation and an $\omega-2 \theta$ scan mode.

All calculations were performed with a Geneva version of the XRAY system (Stewart, Machin, Dickinson, Ammon, Heck \& Flack, 1976). 2929 reflections were measured in the range $\theta<35^{\circ}$, which reduced to 939 independent reflections with $I>3 \sigma(I)$. Intensities were corrected for absorption and Lorentzpolarization effects. From a Patterson map the position of the In atom was found. Subsequent Fourier maps yielded the Al and three S atom positions.

Refinement of the atomic positions and isotropic thermal parameters resulted in $R=0.075$ with the correct space group $P 6_{1}$. Additional refinement with anisotropic thermal parameters and isotropic extinction yielded the final $R=0.026^{*}$ and an average shift/error of 10^{-4}. Scattering factors for Al, In and S (Cromer \& Mann, 1968) were used and corrected for anomalous

[^0]Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$

	x	y	z
In	$6687(1)$	$-50(1)$	$1250(0)$
Al	$3199(4)$	$3309(3)$	$1529(1)$
$\mathrm{S}(1)$	$2945(3)$	$-56(3)$	$1152(1)$
$\mathrm{S}(2)$	$285(4)$	$3677(4)$	$1078(1)$
$\mathrm{S}(3)$	$6779(3)$	$6356(3)$	$1418(1)$

Table 2. Interatomic distances (\AA) and angles (${ }^{\circ}$)

$\ln -\mathrm{S}(1) \quad 2$.	(3)	$\mathrm{Al}-\mathrm{S}(1)$	7 (4)
-S(2) 2.	3 (2)	-S(2) 2.	8 (4)
-S(3) 2.	7 (3)	-S(3) 2.	(3)
-S(2) 2 .	(2)	$-\mathrm{S}\left(1^{\prime}\right)$	
$-\mathrm{S}\left(3^{\prime}\right) \quad 2.6$	(3)		
S(1)-In-S(2)	117.4 (1)	$\mathrm{S}(1)-\mathrm{Al}-\mathrm{S}(2)$	111.4 (1)
$\mathrm{S}(1)-\mathrm{In}-\mathrm{S}(3)$	121.4 (1)	$\mathrm{S}(1)-\mathrm{Al}-\mathrm{S}(3)$	113.0 (1)
S(1)-In-S(3')	84.0 (1)	$\mathrm{S}(1)-\mathrm{Al}-\mathrm{S}\left(1^{\prime}\right)$	$102 \cdot 6$ (1)
$\mathrm{S}(1)-\mathrm{In}-\mathrm{S}\left(2^{\prime}\right)$	90.5 (1)	$\mathrm{S}(2)-\mathrm{Al}-\mathrm{S}(3)$	117.5 (1)
$\mathrm{S}(2)-\mathrm{In}-\mathrm{S}(3)$	121.0 (1)	$\mathrm{S}(2)-\mathrm{Al}-\mathrm{S}\left(1^{\prime}\right)$	111.3 (1)
$\mathrm{S}(2)-\mathrm{In}-\mathrm{S}\left(3^{\prime}\right)$	87.9 (1)	$\mathrm{S}(3)-\mathrm{Al}-\mathrm{S}\left(1^{\prime}\right)$	99.3 (1)
$\mathrm{S}(2)-\mathrm{In}-\mathrm{S}\left(2^{\prime}\right)$	$95 \cdot 1$ (1)		
$\mathrm{S}(3)-\mathrm{In}-\mathrm{S}\left(\mathbf{3}^{\prime}\right)$	94.2 (1)		
$\mathrm{S}(3)-\mathrm{In}-\mathrm{S}\left(2^{\prime}\right)$	88.3 (1)		
$\mathrm{S}\left(3^{\prime}\right)-\ln -\mathrm{S}\left(2^{\prime}\right)$	174.4 (1)		

dispersion. The atomic coordinates are listed in Table 1, interatomic distances and angles in Table 2.

Discussion. Fig. 1 shows a section parallel to (0001) at height $z \sim 0 \cdot 13$. The structure is built up by six of these layers. Fig. 2 shows the ($01 \overline{1} 0$) plane.

In and S form a slightly distorted trigonal bipyramid. Three S are located in the equatorial plane $[S(1), S(2)$, and $S(3)]$ with $\mathrm{In}-\mathrm{S}$ distances of $2 \cdot 500,2.463$, and $2.447 \AA$; the two others lie above $\left[\mathrm{S}\left(2^{\prime}\right)\right]$ and below [$\mathrm{S}\left(3^{\prime}\right)$] the In atom at 2.678 and $2 \cdot 683 \AA$, building the axis of the bipyramid parallel to z. The Al atom is coordinated by a S tetrahedron. Three S are located in a plane parallel to (0001), the fourth lying above Al , the $\mathrm{Al}-\mathrm{S}$ distances being $2 \cdot 267,2 \cdot 228,2.240$ and 2.310 Å.

The structure of AlInS_{3} is closely related to that of $\mathrm{In}_{2} \mathrm{Se}_{3}$ (Likforman, Carré \& Hillel, 1978). The relation-

Fig. 1. View of the structure at $z \sim 0 \cdot 13$. The small dot is Al, the medium In; open circles are S .
ships to the wurtzite structure type are: from ZnS to $\mathrm{Al}_{2} \mathrm{~S}_{3}$ the hexagonal close packing of S is maintained but only $\frac{2}{3}$ of the corresponding tetrahedral voids are occupied by the metal; from $\mathrm{Al}_{2} \mathrm{~S}_{3}$ to $\mathrm{In}_{2} \mathrm{Se}_{3}$ a strong distortion of some of the anion positions parallel to \mathbf{c} is found, setting up a new fivefold coordination of one half of the voids. These are now occupied by $\operatorname{In}(1)$ in $\mathrm{In}_{2} \mathrm{Se}_{3}$ and by In in AlInS . The other half of the voids remain tetrahedrally coordinated and are occupied by $\operatorname{In}(2)$ in $\mathrm{In}_{2} \mathrm{Se}_{3}$ and Al in AlInS_{3}.

We thank Ms Dr E. Röttinger, Chemisches Laboratorium der Universität Freiburg, for the intensity collection and Ms U. Grass for drawings.

Fig. 2. Atomic positions on the (0110) plane.

Numerical calculations were performed on the Univac 1100/81 computer of the Rechenzentrum der Universität Freiburg. The financial support of the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
likforman, A., Carré, D. \& Hillel, R. (1978). Acta Cryst. B34, 1-5.
Stewart, J. M., Machin, P. S., Dickinson, C., Ammon, H. L., Heck, H. \& Flack, H. (1976). The XRAY 76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1979). B35, 3017-3020

Structure of Threadgoldite

By Paul Piret, Jean-Paul Declercq and Dominique Wauters-Stoop

Laboratoire de Chimie Physique et de Crystallographie,Université de Louvain, 1 place Louis Pasteur, B-1348 Louvain-la-Neuve, Belgium
(Received 9 July 1979; accepted 22 August 1979)

Abstract. Al[$\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{UO}_{2}\right)_{2} \mathrm{I}$. $\mathrm{OH} .8 \mathrm{H}_{2} \mathrm{O}$ (a mineral from Kobokobo, Kivu, Zaïre), monoclinic, $C c, a=$ 20.168 (8), $b=9.847$ (2), $c=19.719$ (4) $\AA, \beta=$ $110.71(2)^{\circ}, Z=8, V=3663 \AA^{3}, D_{m}=3.4, D_{c}=$ $3.33 \mathrm{Mg} \mathrm{m}^{-3}$; structure type: torbernite. The $\left[\left(\mathrm{PO}_{4}\right)\left(\mathrm{UO}_{2}\right)\right]_{n}^{n-}$ layers are connected principally by $\mathrm{Al}_{2} \mathrm{O}_{10}$ groups which are composed of two octahedra.

Introduction. Threadgoldite is a mineral recently described by Deliens \& Piret (1979). The results are here completed with the structure determination. The space group $C c$ or $C 2 / c$ was determined from 0567-7408/79/123017-04\$01.00

Weissenberg and precession photographs (systematic absences: $h k l: h+k=2 n+1 ; h 0 l: l=2 n+1)$. However, if a few weak reflexions are neglected, the following unit cell is found: $a^{\prime}=9.530, b^{\prime}=9.847, c^{\prime}$ $=9.860 \AA, \beta^{\prime}=98.2^{\circ}, V^{\prime}=V / 4$ with $\mathbf{a}^{\prime}=\mathbf{a} / 2+\mathbf{c} / 4$, $\mathbf{b}^{\prime}=-\mathbf{b}, \mathbf{c}^{\prime}=-\mathbf{c} / 2$, space group $A 2, A m$ or $A 2 / m$.

Refinement of the structure with this unit cell or with the true unit cell (see $A b s t r a c t$) in space group $C 2 / c$ displays apparent disorder, especially for the $\mathrm{Al}_{2} \mathrm{O}_{10}$ group. Consequently, the true space group is $C c$, for which no disorder appears. Cell dimensions and intensities were measured on a Syntex $P 2_{1}$ four-circle © 1979 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34738 (7 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

